比较来自世界各地的卖家的域名和 IT 服务价格

Pandas dataframe.value_counts//.keys// 随着浮动指标

我正在努力使用 pandas 为了获得 value_counts. 运行命令时:


my_variable.value_counts//.keys//


我得出以下结论:

指数/[1.0, 0.0, 1.00999999046, 2.0, 2.00999999046, 3.0,
1.01000022888, 3.00999999046, 4.00999999046, 4.0, 6.00999999046, 5.00999999046, 8.00999999046, 2.01000022888, 5.0, 0.990000009537, 9.00999999046, 6.0, 7.0, 12.0099999905, 7.00999999046, 10.0099999905, 3.01000022888, 19.0199999809, 11.0099999905, 20.0199999809, 8.0, 14.0199999809, 4.01000022888, 5.01000022888, 38.0399999619, 46.0499999523, 40.0399999619, 20.0299999714, 16.0199999809, 18.0299999714, 9.01999998093, 11.0199999809, 21.0199999809, -10651.4099998, -4643.13999987, -6388.92000008, -5779.98000002], dtype =对象/

问题是如何访问由浮点值组成的密钥,例如键 1.00999999046?

我可以访问索引 1.0 通过:


my_variable.value_counts//[1]


但如果我试试


my_variable.value_counts//[1.00999999046]


然后我收到一条错误消息:

KeyError: 1.00999999046

我相信这可以是与索引=索引的对象的事实有关,但我不知道该怎么做才能解释它。 任何指南都将得到理解。
已邀请:

窦买办

赞同来自:

它很棒 >= 0.13. 到 0.13 浮动指标不特别。 现在他们有逻辑来避免舍入 / 索引者的中断到整数数字。 in-other-works 价值观正在寻找,不强行 /为了 Float64Index/. 事实上,这种类型的索引的含义是创建一个统一的索引模型
[],ix,loc

, 返回相同的准确结果。

厘米。
http://pandas.pydata.org/panda ... index

In [8]: i = Index/[1.0, 0.0, 1.00999999046, 2.0, 2.00999999046, 3.0, 1.01000022888, 3.00999999046, 4.00999999046, 4.0, 6.00999999046, 5.00999999046, 8.00999999046, 2.01000022888, 5.0, 0.990000009537, 9.00999999046, 6.0, 7.0, 12.0099999905, 7.00999999046, 10.0099999905, 3.01000022888, 19.0199999809, 11.0099999905, 20.0199999809, 8.0, 14.0199999809, 4.01000022888, 5.01000022888, 38.0399999619, 46.0499999523, 40.0399999619, 20.0299999714, 16.0199999809, 18.0299999714, 9.01999998093, 11.0199999809, 21.0199999809, -10651.4099998, -4643.13999987, -6388.92000008, -5779.98000002]/

In [9]: i
Out[9]: Float64Index/[1.0, 0.0, 1.00999999046, 2.0, 2.00999999046, 3.0, 1.01000022888, 3.00999999046, 4.00999999046, 4.0, 6.00999999046, 5.00999999046, 8.00999999046, 2.01000022888, 5.0, 0.990000009537, 9.00999999046, 6.0, 7.0, 12.0099999905, 7.00999999046, 10.0099999905, 3.01000022888, 19.0199999809, 11.0099999905, 20.0199999809, 8.0, 14.0199999809, 4.01000022888, 5.01000022888, 38.0399999619, 46.0499999523, 40.0399999619, 20.0299999714, 16.0199999809, 18.0299999714, 9.01999998093, 11.0199999809, 21.0199999809, -10651.4099998, -4643.13999987, -6388.92000008, -5779.98000002], dtype='object'/

In [10]: s = Series/i.tolist// * 3/


In [13]: s.value_counts//[1.00999999046]
Out[13]: 3


请注意,索引的显示具有值的截断视图。 /它们充分存在,只是在这里不超过2个地方打印它们/


In [14]: s.value_counts//.sort_index//
Out[14]:
-10651.41 3
-6388.92 3
-5779.98 3
-4643.14 3
0.00 3
0.99 3
1.00 3
1.01 3
1.01 3
2.00 3
2.01 3
2.01 3
3.00 3
3.01 3
3.01 3
4.00 3
4.01 3
4.01 3
5.00 3
5.01 3
5.01 3
6.00 3
6.01 3
7.00 3
7.01 3
8.00 3
8.01 3
9.01 3
9.02 3
10.01 3
11.01 3
11.02 3
12.01 3
14.02 3
16.02 3
18.03 3
19.02 3
20.02 3
20.03 3
21.02 3
38.04 3
40.04 3
46.05 3
dtype: int64

In [15]: s.value_counts//[1.00999999046]
Out[15]: 3

In [16]: s.value_counts//.keys//
Out[16]: Float64Index/[3.00999999046, 14.0199999809, 2.00999999046, -10651.4099998, 2.01000022888, 18.0299999714, 20.0299999714, 16.0199999809, 6.00999999046, 3.01000022888, 8.0, 11.0199999809, 19.0199999809, 7.0, 1.01000022888, 0.990000009537, 4.0, 3.0, 2.0, 1.0, 46.0499999523, 11.0099999905, 12.0099999905, 4.00999999046, 40.0399999619, 7.00999999046, 9.01999998093, 6.0, -6388.92000008, 21.0199999809, 38.0399999619, 5.0, 20.0199999809, 4.01000022888, -5779.98000002, 1.00999999046, 9.00999999046, -4643.13999987, 5.01000022888, 10.0099999905, 8.00999999046, 5.00999999046, 0.0], dtype='object'/

要回复问题请先登录注册